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Abstract

An approximate solution is presented to the seismic inverse
problem for two-dimensional velocity variations. The solution is
given as a multiple integral over the data observed at the upper
surface. An acoustic model is used and the reflections are assumed
to be sufficiently weak to allow a "linearization" procedure in the
otherwise non-linear inverse problem. Synthetic examples are
presented demonstrating accuracy of the method with dipping planes
at angles up to 45° and with velocity variations up to 20%. The
method was also tested under automatic gain control, in which case
velocity estimates were lost but the method nonetheless sucessfully

migrated the data.
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Introduction

In recent papers (Bleistein and Cohen, 1977; Cohen and Bleistein,
1977), the authors have shown that closed form approximate solutions
for the velocity (or a velocity related quantity) profile can be
obtained for a wide variety of wave propagation equations. "Closed
form," as used here, means that the velocity profile (depth section)
is obtained by direct processing on the observed data (time section)

itself; i.e., by performing weighted quadratures on the data.

In this paper we present an approximate solution to an inverse
problem often used in seismic modeling. It is assumed that the
velocity in the subsurface varies in only two dimensions, vertically
and laterally. A line of point sources is set off and the backscattered
signal is observed.+ This is the mathematical idealization of
summation of common depth-point (CDP) traces. An approximate integral
equation is derived for the variation in velocity from some known
reference value. When that reference value is a constant, the
integral equation has a closed form solution for the two-dimensional

velocity variation.

The simplifying assumptions which lead to the closed form solu-
tion presented here are as follows. Firstly, it is assumed that the
acoustic wave equation adequately describes the subsurface wave pro-

pagation (although in the first paper cited above inversion for

With a planar array of backscatter observations, the analysis can

be extended to yield an approximate solution to the three-dimensional
inverse problem; i.e., to find a velocity that varies in all three
dimensions.
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elastic wave propagation was discussed). Secondly, the subsurface
velocity variations must be small. This justifies linearization of
an otherwise non-linear problem. Even this "smallness" limitation is
not overly restrictive as can be seen from one of the examples below
in which a 20% velocity variation was successfully migrated and
estimated. In fact, the real world data restrictions--noise, attenu-
ation, discretization and finiteness of observations, etc.,--are
usually of greater concern than this theoretical linearization

assumption.

This second assumptibn has signigicant theoretical consequences,
namely, that reflecting interfaces cause "weak" reflections and the
(downward) transmitted wave may be taken to be the response to the

source in a homogeneous (constant velocity) medium.

A computer program was developed to implement our result on
synthetically generated data. The synthesis embodies several real

world restrictions, namely:

(i) the observations are made only at discrete points
on the line;

(ii) the observations are made only over a finite length
of the line;

(iii) the observations are band limited in frequency.

For the examples here, in (i) the spacing between shot-receiver

points was taken to be

AE = 100 ft.; (1)

R ———

MR oo oo il B ok .%{"”?'”WW,‘




in (ii), the line was taken to extend from -L to L, with

L = 4,000 ft.; (2)

in (iii) the bandwidth f_ f f_was used with

£
[}

. =& = % m. (3)
An important feature of the direct inverse procedure used here
is that it does not break down as the dip angle of reflecting sur-
faces is increased. This can be seen in the examples below of
dipping planes with dip angles up to 45°. This is so because this
direct inversion procedure is formulated from propagation governed
by the wave equation itself, rather than from a parabolic approxi-
mation to the wave equation. Parabolic approximations are known to
“flatten" the dip of wave fronts (Claerbout, 1976) and consequently
flatten the dip of profiles, as well. This is demonstrated with
three-dimensional examples in the above-cited paper by Bleistein and
Cohen (1977) in which a three-dimensional inversion procedure, starting

from the parabolic approximation, is presented.

This feature of accuracy at all dip angles is also present for
migration schemes based on the wave equation itself--see, for example,
French (1975), Larner and Hatton (1976), Schneider (1970). However,
as migration techniques, these methods produce only a subsurface

profile--i.e., layer mapping but no velocity estimates. The velocity
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profile produced by the direct inversion method described here, pro-
duces velocity estimates as well as a layer mapping. These velocity
estimates require true amplitude information. When such information
is not available--e.g., if automatic gain control has been applied--
the direct inversion technique simply migrates the data to produce a

depth section without a velocity estimate.

The linearization procedure used in the derivation of our
inversion procedure is often referred to as the Borm approximation
(Morse and Feshbach, 1953). It has been successfully exploited in
the past to yield approximate solutions of other inverse scattering
problems. For example, Prosser (1969, 1976) has shown that in
certain cases, this approximation leads to a first iterate in an
iteration scheme to solve certain "refraction" or "potential”
inverse problems. Three essential requirements of his proof are
that (i) the scattering potential or reflectivity be "sufficiently
weak;" (ii) the scattering region be finite in extent and (iii) the
scattering potential or fractive index be "smooth" in a manner
prescribed by certain decay estimates on its spatial Fourier transform

at infinity.

The condition (i) is assumed by us, as well. Conditions (ii)
and (iii) are simply not true in seismic problems. In particular,
condition (ii) leads to a particularly simple first approximation of
the index of refraction, namely, that its three-dimensional spatial
Fourier transform is proportional to the backscattered data. The
lack of transverse confinement heads to the much more difficult

inversion formula given by equation (9), below.

4

B e sinbe - mm_ o e R & g 3'”"W‘. : ‘_a"f’l"




Analysis

It is assumed that the medium to be probed supports acoustic
waves with wave speed v(x, z). Here x is the transverse variable
and z is the depth variable (measured positive downward from the
upper surface). Thus, the medium has velocity variation in one

transverse direction only.

The governing equation for the wave field U(t, x, y, 2z) is

v2y -2 3%y . =
- v ompr = - 8(x - ) s(y)s(z)s(t), u=0,t<0. (4)

Here v2 is the three-dimensional Laplacian and § denotes the Dirac
delta function. At each point, x = ¢, y = z = 0, on the source-
receiver line, an impulsive source is set off and the backscattered
field at (t, £, 0, 0), denoted by Us(t, £), is observed. Each such
experiment (i.e., for each ¢) is set off separately. In each case,
the "time clock of observation" is reset so that t = 0 corresponds to

the time when the pulse is set off.

This formulation dispenses with the upper surface as a boundary.
Alternatively, one could replace (4) by a homogeneous equation in
Z > 0 and prescribe a boundary condition at z = 0 which contains the
source term. In the simplest model of this type one would prescribe
9U/3z as an impulse at each surface point. The consequent change
induced by this simplest model is to introduce multipliers of 2 and 4
in the results stated below, while not changina the substantive results

at all. Thus, we proceed with (4) as the governing equation.
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With ¢ denoting a constant reference speed, we define the

variation in v_2(x, z) by the equation
-l -2
v (%, z) = € °[1 +alx, 2)] - (5)

By using the methods in Bleistein and Cohen (1977), the following

integral equation may be derived for a(x, z):*

@ o]

H(%} =
dz  Jdx ofn,2) —=——n = s 0(r:E)} . (6)
A () - o?

Here, H is the Heaviside function,

p = /(x-E)Z + 22 (7)

and
0
0(1,£) = - (4nc)? fdth-t)us(t.g). (8)
0

The integral equation can be solved by transform techniques.

The result is

* see Appendix A.




[e 2] (o8] o0 (e} T
P |
alx, z) = Bi¢ /dg/dk /dk /dr /dt k (t2-Tt)
™ 1 3 3
-0 -0 -0 0 0

'Us(t,E)exp{Zikl(x-g) - Zikaz + iwt} (9)

&
]

c[sgnka]/F:7—:_F:7 (10)

This is a formula which reproduces o(x, z) by direct processing of
the observed data itself. In fact, this is not the formula to be
used for computer implementation. Instead, the integrand is

multiplied by -21‘k3 to yield a formula for o” = 30/5z.

For a layered medium, o(x, z) is a constant in each layer
while a” is proportional to a sum of Dirac delta functions which
peak on the interfaces between the layers. Since band limited
delta functions are much easier to recognize than band 1imited
step functions, it is far more desirable to process data for
a” than for o. An analytical development of these ideas can be
found in Mager and Bleistein (1976). In particular, it is shown
in that paper how to estimate the magnitude of the jump in a at
a discontinuity in terms of the output of the band limited deri-

»

vative, a”. It is this analysis that provides our velocity esti-

mates from this band limited data.
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Examples

To take account of the constraints cited earlier in this paper,
the multiple integration in (9) is carried out as follows. The
time domain is truncated at the maximum time of “reliable" observa-
tions Us(t, £). The step size in the time interval is the sampling
rate. The integrals in wave vector are restricted to an annulus

consistent with the frequency constraint, i.e.,

enf enf,
T < JKZFKZ < =
1 3

C

The integration over £ is truncated to the interval (-L, L) and
the step size A£ (in this paper, 100 ft.) is used for this

quadrature.

A computer algorithm has been developed by the authors to
generate o” in accordance with (9) and the discussion above.
Synthetic data Us(t, £) was generated for various subsurface profiles

and then the data was processed to produce ao'.

In Figures 2, 3, and 4 are the results for profiles of the type
in Figure 1 with 6 being 15°, 30°, and 45° respectively. The angle of
inclination of the interface is accurately reproduced in the region
bounded by the dashed lines of Figure 1. The velocity c in this case
was 5,000 ft./sec., Ac was 250 ft./sec. A typical value of Ac

estimated from the output was 249.7 ft./sec. In this type of
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configuration, the error is virtually linear in Ac and hence these

percentage errors will be maintained for much highe~ values of Ac.

For these examples, one can generate the synthetic data
analytically and calculate the integral in (9) asymptotically, under
the constraint (11). The result of that analysis is completely con-
sistent with the numerical output, both as regards the location of

the interface and the estimate of Ac.

Figure 5 shows a time section for an anticline. Figure 6 is the
result of direct inversion and gives virtually the exact model,
which was a circular anticline. For example, the top of the actual
circle was located at 1,500 ft. and our output yielded an estimate
of 1,502 ft. The actual jump Ac at this point was again 250 ft./sec.;
the estimate from our output was 247.1 ft./sec. In the middle of
the flanking plane (x = 2,700 ft.), the actual location and jump
were 2,000 ft. and 250 ft./sec., respectively; our estimates were

2,000 ft. and 248.1 ft./sec.

Figure 7 is the time section for a circular syncline. Figure 8
is the result of our direct inversion procedure. Depth and Ac at
the bottom of the circle were 3,472 ft. and 250 ft./sec.; direct
inversion yielded 3,472 ft. and 249.3 ft./sec., respectively. At
x = 3,600 ft. (on the flank plane) the depth and Ac values were
2,000 ft. and 250 ft./sec.; direct inversion yielded 2,010 ft. and
253.6 ft./sec.
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Figure 9 shows a subsurface configuration for which synthetic
data was graciously provided to us by the research group at Marathon
0il. The time section provided by them is depicted in Figure 10;
Figure 11 is the result of our direct inversion procedure and
Figure 12 shows our estimate from the output of various relevant
quantities in the model. The lower two sets of numbers exhibit
errors of less than 4%, while above that level, the errors are less

than 1%.

Automatic gain control was applied to the input and the data
was again processed by our inversion procedure. The output was
indistinguishable from Figure 11. In this case, the output does
not provide velocity estimates, and thus our inversion procedure

becomes a migration procedure.

10
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Conclusions

We have derived an approximate solution to the inverse problem
for the velocity in an inhomogeneous medium which supports acoustic
waves. The approximations made are often used in modeling the
inverse problem in seismic exploration and can be found also in the
references cited earlier, as well as in many other papers. A com-
puter implementation on synthetic data under a number of realistic

constraints has also been carried out.

11
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APPENDIX

The derivations of equation (6) will be presented here. To

begin, the function

Uo(t, x, ¥y, 2) = &(t - r/c)/(4nr),

r= JXZ¥yZ¥z2 (A1)

is introduced. This is the Green's function for the "wave operator”

in (4) when v is replaced by c, defined in (5).

We form the expression,

Upt - ty X =€, ¥» Z)[v2 -g " g—i;] uit, x, ¥ 2)

- U(t, x, y, 2) [vz- £ %%—] Uolt = s X * &5 ¥s T)s

and integrate over space-time. The integral can be shown to be
equal to zero by Green's theorem. An alternative result is obtained

by noting the following:

[72 - ¢ & ] Uole -t x - €4 ya 2) = =8(x - £)s(¥)s(2) sle-t),

Up = Up, =0, t =13 (A2)

t

¥
q

1

wp
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[vz -c S—ir] Ults %, 3, 2) = =5(x - E)ss(2)s(t) + &

QL

U=U_.=0,t=0. (A3)

Thus, it follows that
g /dt ]dXdydt{Uo(T ~t, X~ Es ¥ 2) [-G(x - £)s(y)s(z)s(t)

]

+ U(t, x, y, 2)a(x «g)sly)s(z)s(r - t)} " (A4)

32

=

+

anQ
4

By using the Dirac delta functions and the initial and final condi-

tions in (A2, 3)-this result may be simplified to the following:

oo

T
/dt dxdydz o U, 353 (AS)
0 -

SRS C2U(Tg Es 0, 0) = Us(Ts E:.)' (AS)

Here, the last expression defines Us(r,e) as used in this paper.
Integration by parts 1h (A5) and use again of the initial and final
conditions in (A2, 3) places the second time derivative 3%/dt?

on Up instead of on U. This can then be replaced by a second time

15




derivative with respect to T : 32/3t%. A double integration with
respect to t and an interchange of orders of integration then

yields

% o
fdtfdxdydz a Uo(t - t, x - &, ¥, Z)U(t, x, ¥y, 2)
0

«-00

T
= = ¢t / (t- t)ug(t, €) dt. (A6)
0

If (A3) is formally solved by perturbation methods, then to leading

order
U(t, x5 ¥y, 2) = Uo(t, x - £, y, 2) (A7)

with the correction term of order ao. Substituting (A7) yields the

equation,

©o

L
/dtdedde G(X, Z) UO(T' t, x =&, Yy, Z)UO(t9 X -&E, ¥s Z)
0 -00

T
= -CZ/ (T' t)us(t9 g)dg ’ (A8)
0

with the correction to the integrand on the left of the order of o?,
which is negligible for o small., With U given by (Al), the t and y

integrations can now be carried out to yield (6).
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